Removal of Diclofenac in Effluent of Sewage Treatment Plant by Photocatalytic Oxidation

Author:

Ma Nan,Zhang Nannan,Gao Ling,Yuan Rongfang,Chen Huilun,Hou Xuerui,Hou Jiawei,Wang Fei,Zhou Beihai

Abstract

Diclofenac (DCF) has been widely found in sewage treatment plants and environmental water bodies, and has attracted worldwide attention. In this paper, the photocatalytic degradation of DCF was investigated using a laboratory-scale simulated solar experimental device. This study focused on exploring the effects of the actual secondary effluent from sewage treatment plants (SE-A and SE-B) on the photocatalytic degradation of DCF and the changes of dissolved organic matter (DOM) during the photocatalytic degradation process. The results showed when SE-A and SE-B were used as the background water of the DCF solution, they displayed a significant inhibitory effect on the degradation of DCF, and the values of k were 0.039 and 0.0113 min−1, respectively. Among them, DOM played a major inhibitory role in photocatalytic degradation of DCF in sewage. In the photocatalytic process, the biological toxicity of the DCF solution was the least after 30 min of reaction, and then gradually increased. Furthermore, the organic matters in the sewage were greatly degraded after the photocatalytic reaction, including 254 and 365 nm ultraviolet (UV254, UV365) and chemical oxygen demand (COD). Moreover, titanium dioxide (TiO2) first catalyzed the degradation of macromolecular organic matters, and then degraded the small molecular organic matters.

Funder

Fundamental Research Funds for the Central Universities

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3