Sensing Data Concealment in NFTs: A Steganographic Model for Confidential Cross-Border Information Exchange

Author:

Al-Sumaidaee Ghassan1ORCID,Žilić Željko1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, McGill University, Montréal, QC H3A 0G4, Canada

Abstract

In an era dominated by rapid digitalization of sensed data, the secure exchange of sensitive information poses a critical challenge across various sectors. Established techniques, particularly in emerging technologies like the Internet of Things (IoT), grapple with inherent risks in ensuring data confidentiality, integrity, and vulnerabilities to evolving cyber threats. Blockchain technology, known for its decentralized and tamper-resistant characteristics, stands as a reliable solution for secure data exchange. However, the persistent challenge lies in protecting sensitive information amidst evolving digital landscapes. Among the burgeoning applications of blockchain technology, non-fungible tokens (NFTs) have emerged as digital certificates of ownership, securely recording various types of data on a distributed ledger. Unlike traditional data storage methods, NFTs offer several advantages for secure information exchange. Firstly, their tamperproof nature guarantees the authenticity and integrity of the data. Secondly, NFTs can hold both immutable and mutable data within the same token, simplifying management and access control. Moving beyond their conventional association with art and collectibles, this paper presents a novel approach that utilizes NFTs as dynamic carriers for sensitive information. Our solution leverages the immutable NFT data to serve as a secure data pointer, while the mutable NFT data holds sensitive information protected by steganography. Steganography embeds the data within the NFT, making them invisible to unauthorized eyes, while facilitating portability. This dual approach ensures both data integrity and authorized access, even in the face of evolving digital threats. A performance analysis confirms the approach’s effectiveness, demonstrating its reliability, robustness, and resilience against attacks on hidden data. This paves the way for secure data transmission across diverse industries.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3