Minimal Bio-Inspired Crawling Robots with Motion Control Capabilities

Author:

Wu Jintian1,Liu Mingyi23,Padovani Damiano2ORCID

Affiliation:

1. Technion-Israel Institute of Technology, Haifa 3200003, Israel

2. Guangdong Technion-Israel Institute of Technology, Shantou 515063, China

3. Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China

Abstract

Nonskeletal animals such as worms achieve locomotion via crawling. We consider them as an inspiration to design robots that help underline the mechanisms of crawling. In this paper, we aim to identify an approach with the simplest structure and actuators. Our robots consist of cut-and-fold bodies equipped with pneumatically-driven soft actuators. We have developed fabrication techniques for coin-sized robots. Experiments showed that our robots can move up to 4.5 mm/s with straight motion (i.e., 0.1 body lengths per second) and perform cornering and U-turns. We have also studied the friction characteristics of our robots with the ground to develop a multistate model with stick–slip contact conversions. Our theoretical analyses depict comparable results to experiments demonstrating that simple and straightforward techniques can illustrate the crawling mechanism. Considering the minimal robots’ structure, this result is a critical step towards developing miniature crawling robots successfully.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3