Dynamic Response Analysis of a Magnetically Suspended Dual-Rotor System Considering the Uncertainty of Interference-Fit Value

Author:

Wang Nianxian12,Tao Wenqiang12,Liu Mingzheng12,Nai Yunfei12

Affiliation:

1. School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, No. 947, Heping Venue, Qingshan District, CT, Wuhan 430081, China

Abstract

Interference fit is often used in rotating machinery to transmit torque and force. The actual interference value is uncertain due to factors such as manufacturing errors and operating conditions, resulting in a gap between the response of the system and theoretical results. Therefore, the interval method is used to study the magnetically suspended dual-rotor system (MSDS) with uncertainty of interference-fit value. Firstly, a theoretical model of the MSDS was established using the finite element method, and the influence mechanism of the interference value on the rotor bending stiffness was derived. Then, the rotor stiffness range was obtained from the uncertain range of interference value. Finally, the dynamic response of the MSDS was studied based on the Chebyshev interval method. The research results indicate that the uncertainty of interference value has an effect on the vibration response of the MSDS. The vibration response of the system is most affected near the first-order bending critical speed, and the effect on rotor response is relatively small in other angular speed regions. The research results can provide a basis for the design of rotor systems.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3