Affiliation:
1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
Abstract
Permanent magnet synchronous linear motor (PMSLM) is widely used to meet the requirement of high dynamic accuracy positioning, such as in machine tools and devices of semiconductor manufacturing. A new 2-DOF control structure is proposed in this paper to improve the dynamic performance of the positioning servo system with PMSLM. Aiming at the position tracking performance, a control algorithm based on the model predictive control (MPC) is developed with position and speed as the feedback state variables. In addition, an extended state observer (ESO) is designed for the rejection of various disturbances, which are not involved in the control model and are regarded as the lumped disturbance to be estimated and compensated by the ESO. The experimental results show that, compared with the commonly used PPI controller (proportional position controller and proportional–integral speed controller), the proposed method enhances the position bandwidth and servo stiffness effectively.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China