Study of Error Flow for Hydraulic System Simulation Models for Construction Machinery Based on the State-Space Approach

Author:

Su Deying1,Rao Hongyan1,Wang Shaojie1ORCID,Pan Yongjun2ORCID,Xu Yubing3,Hou Liang1ORCID

Affiliation:

1. Pen Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China

2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China

3. Xuzhou XCMG Excavation Machinery Co., Ltd., Xuzhou 221000, China

Abstract

This study presents an error flow research method for simulation models of hydraulic systems in construction machinery based on the state-space approach, aiming to ensure the reliable application of digital twin models. Initially, a comprehensive analysis of errors in the simulation modeling of hydraulic systems in construction machinery was conducted, highlighting simulation model parameters as the primary error sources. Subsequently, a set of metrics for assessing the accuracy of simulation models was developed. Following this, an error flow analysis method for simulation models of hydraulic systems in construction machinery was explored based on the state space approach, delving into the sources, transmission, and accumulation of errors in the simulation modeling of valve-controlled cylinder systems. The research results unequivocally indicate that the spring stiffness, viscous damping coefficient, and hydraulic cylinder external leakage coefficient are critical parameters affecting the accuracy of valve-controlled cylinder system simulation models. Furthermore, it was observed that the simulation model of the control valve has a significantly greater impact on the errors in the valve-controlled cylinder system simulation model than the hydraulic cylinder model. In conclusion, the reliability of the error flow model was confirmed through simulation experiments, revealing a maximum relative error of only 3.73% between the error flow model and the results of the simulation experiments.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Science and Technology Plan Project of Fuzhou City

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3