Affiliation:
1. School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
Abstract
Emerging robotic systems with compliant characteristics, incorporating nonrigid links and/or elastic actuators, are opening new applications with advanced safety features, as well as improved performance and energy efficiency in contact tasks. However, the complexity of such systems poses challenges in modeling and control due to their nonlinear nature and model variations over time. To address these challenges, the paper introduces Locally Weighted Projection Regression (LWPR) and its online learning capabilities to keep the model of compliant actuators accurate and enable the model-based controls to be more robust. The approach is experimentally validated in Cartesian position and stiffness control for a 4 DoF planar robot driven by Variable Stiffness Actuators (VSA), whose real-time implementation is supported by the Sequential Least Squares Programming (SLSQP) optimization approach.
Funder
Science Fund of the Republic of Serbia