Relationship between Microstructure, Mechanical Properties and Creep Behavior of a Cr-Rich Ferritic Stainless Steel Produced by Laser Powder Bed Fusion

Author:

Karlsson Dennis,Helander ThomasORCID,Bettini Eleonora,Hassila Carl-Johan,Cedervall Johan,Sahlberg Martin,Harlin PeterORCID,Jansson Ulf

Abstract

Additive manufacturing (AM) techniques such as laser powder bed fusion (L-PBF) are rapidly growing due to the inherent design freedom and possibilities to produce components not available with other techniques. This could be utilized in, e.g., the design of new types of heat exchangers in ferritic stainless steels often used for high-temperature applications. Ferritic stainless steels are, however, difficult to weld and could therefore imply obstacles when produced by AM. When establishing the AM-produced alloy in new applications, it is therefore important to increase the understanding of the mechanical properties and high-temperature creep resistance in relation to the unique microstructure and printability. In this study, we have investigated the microstructure of Cr-rich SS446 ferritic stainless steel produced by L-PBF by microscopical and crystallographic techniques. The properties were compared to the conventionally produced tubes. The rapid cooling and reheating during the application of the subsequent powder layers during L-PBF introduces an intriguing microstructure consisting of a ferritic matrix with precipitation of austenite showing a Kurdjumov–Sachs orientation relationship. Characteristic dislocation networks were observed in the L-PBF samples and contributed to the good mechanical properties in the as-built state (more than twice the yield strength of the conventionally produced tube). Furthermore, the creep resistance at 800 °C was superior to the conventionally produced component, suggesting that L-PBF-produced SS446 possesses many advantages regarding production as compared to the conventional route.

Funder

Swedish Foundation for Strategic Research

Swedish Research Council

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3