A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using Attention-Based Convolutional Neural Network and Long Short-Term Memory Network

Author:

Zhou Shengwen,Guo Shunsheng,Du BaigangORCID,Huang Shuo,Guo Jun

Abstract

Urban water demand forecasting is beneficial for reducing the waste of water resources and enhancing environmental protection in sustainable water management. However, it is a challenging task to accurately predict water demand affected by a range of factors with nonlinear and uncertainty temporal patterns. This paper proposes a new hybrid framework for urban daily water demand with multiple variables, called the attention-based CNN-LSTM model, which combines convolutional neural network (CNN), long short-term memory (LSTM), attention mechanism (AM), and encoder-decoder network. CNN layers are used to learn the representation and correlation between multivariate variables. LSTM layers are utilized as the building blocks of the encoder-decoder network to capture temporal characteristics from the input sequence, while AM is introduced to the encoder-decoder network to assign corresponding attention according to the importance of water demand multivariable time series at different times. The new hybrid framework considers correlation between multiple variables and neglects irrelevant data points, which helps to improve the prediction accuracy of multivariable time series. The proposed model is contrasted with the LSTM model, the CNN-LSTM model, and the attention-based LSTM to predict the daily water demand time series in Suzhou, China. The results show that the hybrid model achieves higher prediction performance with the smallest mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE), and largest correlation coefficient (R2).

Funder

National Natural Science Foundation of China

China Scholarship Council

Fundamental Research Funds for the Central Universities, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3