Assessing Ground Vibration Caused by Rock Blasting in Surface Mines Using Machine-Learning Approaches: A Comparison of CART, SVR and MARS

Author:

Komadja Gbétoglo Charles,Rana Aditya,Glodji Luc Adissin,Anye Vitalis,Jadaun Gajendra,Onwualu Peter AzikiweORCID,Sawmliana Chhangte

Abstract

Ground vibration induced by rock blasting is an unavoidable effect that may generate severe damages to structures and living communities. Peak particle velocity (PPV) is the key predictor for ground vibration. This study aims to develop a model to predict PPV in opencast mines. Two machine-learning techniques, including multivariate adaptive regression splines (MARS) and classification and regression tree (CART), which are easy to implement by field engineers, were investigated. The models were developed using a record of 1001 real blast-induced ground vibrations, with ten (10) corresponding blasting parameters from 34 opencast mines/quarries from India and Benin. The suitability of one technique over the other was tested by comparing the outcomes with the support vector regression (SVR) algorithm, multiple linear regression, and different empirical predictors using a Taylor diagram. The results showed that the MARS model outperformed other models in this study with lower error (RMSE = 0.227) and R2 of 0.951, followed by SVR (R2 = 0.87), CART (R2 = 0.74) and empirical predictors. Based on the large-scale cases and input variables involved, the developed models should lead to better representative models of high generalization ability. The proposed MARS model can easily be implemented by field engineers for the prediction of blasting vibration with reasonable accuracy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3