A Review of Energy Efficiency and Power Control Schemes in Ultra-Dense Cell-Free Massive MIMO Systems for Sustainable 6G Wireless Communication

Author:

Imoize Agbotiname LuckyORCID,Obakhena Hope IkogheneORCID,Anyasi Francis Ifeanyi,Sur Samarendra NathORCID

Abstract

The traditional multiple input multiple output (MIMO) systems cannot provide very high Spectral Efficiency (SE), Energy Efficiency (EE), and link reliability, which are critical to guaranteeing the desired Quality of Experience (QoE) in 5G and beyond 5G wireless networks. To bridge this gap, ultra-dense cell-free massive MIMO (UD CF-mMIMO) systems are exploited to boost cell-edge performance and provide ultra-low latency in emerging wireless communication systems. This paper attempts to provide critical insights on high EE operation and power control schemes for maximizing the performance of UD CF-mMIMO systems. First, the recent advances in UD CF-mMIMO systems and the associated models are elaborated. The power consumption model, power consumption parts, and energy maximization techniques are discussed extensively. Further, the various power control optimization techniques are discussed comprehensively. Key findings from this study indicate an unprecedented growth in high-rate demands, leading to a significant increase in energy consumption. Additionally, substantial gains in EE require efficient utilization of optimal energy maximization techniques, green design, and dense deployment of massive antenna arrays. Overall, this review provides an elaborate discussion of the research gaps and proposes several research directions, critical challenges, and useful recommendations for future works in wireless communication systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference209 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3