Targeting Sustainable Transportation Development: The Support Vector Machine and the Bayesian Optimization Algorithm for Classifying Household Vehicle Ownership

Author:

Xu Zhiqiang,Aghaabbasi MahdiORCID,Ali MujahidORCID,Macioszek ElżbietaORCID

Abstract

Predicting household vehicle ownership (HVO) is a crucial component of travel demand forecasting. Furthermore, reliable HVO prediction is critical for achieving sustainable transportation development objectives in an era of rapid urbanization. This research predicted the HVO using a support vector machine (SVM) model optimized using the Bayesian Optimization (BO) algorithm. BO is used to determine the optimal SVM parameter values. This hybrid model was applied to two datasets derived from the US National Household Travel Survey dataset. Thus, two optimized SVM models were developed, namely SVMBO#1 and SVMBO#2. Using the confusion matrix, accuracy, receiver operating characteristic (ROC), and area under the ROC, the outcomes of these two hybrid models were examined. Additionally, the results of hybrid SVM models were compared with those of other machine learning models. The results demonstrated that the BO algorithm enhanced the performance of the standard SVM model for predicting the HVO. The BO method determined the Gaussian kernel to be the optimal kernel function for both datasets. The performance of the SVM#1 model was improved by 4.27% and 5.16% for the training and testing phases, respectively. For SVM#2 model, the performance of this model was improved by 1.20% and 2.14% for the training and testing phases, respectively. Moreover, the BO method enhanced the AUC of the SVM models used to predict the HVO. The hybrid SVM models also outperformed other machine learning models developed in this study. The findings of this study showed that SVM models hybridized with the BO algorithm can effectively predict the HVO and can be employed in the process of travel demand forecasting.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3