Evaluation of Urban Green Building Design Schemes to Achieve Sustainability Based on the Projection Pursuit Model Optimized by the Atomic Orbital Search

Author:

Liu Genbao,Zhao TengfeiORCID,Yan HongORCID,Wu HanORCID,Wang Fuming

Abstract

The popularization and use of green buildings are of great significance for reducing the carbon emissions of buildings and achieving sustainable development. Scientific evaluation of the green building design scheme is the key factor in ensuring the popularization and use of green buildings. To overcome the shortage of a systematic evaluation index system and comprehensive evaluation method, an evaluation index system of green building design schemes and an evaluation method based on the projection pursuit model were developed. First, according to the needs of green building development, an evaluation index system of green building design schemes was systematically constructed from the five aspects of the economy, the resource utilization index, environmental impacts, technical management, and social impacts. The calculation methods of all secondary indexes are provided in detail. Then, a novel evaluation method based on the projection pursuit model optimized by the atomic orbital search was constructed. This method searches for key influencing factors and determines the evaluation grade from the evaluation data structure, and realizes the scientific and objective evaluations of green building design schemes. Finally, the Nanchang Hengda Project was selected to conduct a detailed empirical study. The research results show that the incremental net present value of the investment, the energy consumption of the air conditioning system, and the ratio of the window area to the indoor area are the most important secondary indexes. Moreover, the environmental impact index was found to be the most important primary index. Via comparisons with different optimization algorithms and evaluation methods, the superiority of the proposed model is proven.

Funder

The APC was funded by Jiangxi graduate education and teaching reform research project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3