Rice Novel Semidwarfing Gene d60 Can Be as Effective as Green Revolution Gene sd1

Author:

Tomita MotonoriORCID,Ishimoto Keiichiro

Abstract

Gene effects on the yield performance were compared among promising semidwarf genes, namely, novel gene d60, representative gene sd1 with different two source IR8 and Jukkoku, and double dwarf combinations of d60 with each sd1 allele, in a Koshihikari background. Compared with the culm length of variety Koshihikari (mean, 88.8 cm), that of the semidwarf or double dwarf lines carrying Jukkoku_sd1, IR8_sd1, d60, Jukkoku_sd1 plus d60, or IR8_sd1 plus d60 was shortened to 71.8 cm, 68.5 cm, 65.7 cm, 48.6 cm, and 50.3 cm, respectively. Compared with the yield of Koshihikari (mean, 665.3 g/m2), that of the line carrying Jukkoku_sd1 allele showed the highest value (772.6 g/m2, 16.1% higher than Koshihikari), while that of IR8_sd1, d60 and IR8_sd1 plus d60, was slightly decreased by 7.1%, 5.5%, and 9.7% respectively. The line carrying Jukkoku_sd1 also showed the highest value in number of panicles and florets/panicle, 16.2% and 11.1% higher than in Koshihikari, respectively, and these effects were responsible for the increases in yield. The 1000-grain weight was equivalent among all genetic lines. Except for the semidwarf line carrying Jukkoku_sd1, semidwarf line carrying d60 was equivalent to line carrying IR8_sd1in the yield of unpolished rice, and yield components such as panicle length, panicle number, floret number /panicle. Therefore, the semidwarfing gene d60 is one of the best possible choices in practical breeding.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference27 articles.

1. Green revolution: preparing for the 21st century

2. Breeding history;Hergrove,2016

3. Rice revolutions in Latin America;Jennings,2016

4. On the new varieties of paddy rice, ‘Hoyoku’, ‘Kokumasari’ and ‘Shiranui’;Okada;J. Agric. Exp. Stn. Kyushu,1967

5. Breeding of new rice variety Reimei by gamma ray irradiation;Futuhara;Gamma. Field Symp.,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3