Abstract
It is clearly established that there is not a unique response to soil water deficit but that there are as many responses as soil water deficit characteristics: Drought intensity, drought duration, and drought position during plant cycle. For a same soil water deficit, responses can also differ on plant genotype within a same species. In spite of this variability, at least for leaf production and expansion processes, robust tendencies can be extracted from the literature when similar watering regimes are compared. Here, we present response curves and multi-scale dynamics analyses established on tomato plants exposed to different soil water deficit treatments. Results reinforce the trends already observed for other species: Reduction in plant leaf biomass under water stress was due to reduction in individual leaf biomass and areas whereas leaf production and specific leaf area were not affected. The dynamics of leaf expansion was modified both at the leaf and cell scales. Cell division and expansion were reduced by drought treatments as well as the endoreduplication process. Combining response curves analyses together with dynamic analyses of tomato compound leaf growth at different scales not only corroborate results on simple leaf responses to drought but also increases our knowledge on the cellular mechanisms behind leaf growth plasticity.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference51 articles.
1. Molecular and Physiological Responses to Water-Deficit Stress;Bray,2007
2. Long-Term Climate Change: Projections, Commitments and Irreversibility;Collins,2013
3. How Plants Cope with Water Stress in the Field? Photosynthesis and Growth
4. Plant adaptation to drought stress
5. Morpho-Anatomical Traits for Plant Adaptation to Drought;De Micco,2012
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献