Anthocyanin in the Vacuole of Red Onion Epidermal Cells Quenches Other Fluorescent Molecules

Author:

Collings David A.ORCID

Abstract

Peels from the inner epidermis of onion bulbs are a model system in plant cell biology. While the inner epidermis of red onions is characteristically white, small patches of cells sometimes redden, containing vacuolar anthocyanin. This study investigated the spectroscopic properties of these anthocyanic cells. When fluorescent dyes were loaded into the vacuole of onion epidermal cells, the anthocyanic cells showed decreased dye fluorescence. This decrease was observed for fluorescein and carboxyfluorescein that are pumped into the vacuole by anion transporters, for acridine orange which acid loads into the vacuole, and for the fluorescent sugar analogue esculin loaded into the vacuole by sucrose transporters. Similar decreases in carboxyfluorescein fluorescence were observed when dye was loaded into the vacuoles of several other plant species, but decreases were not observed for dyes resident in the tonoplast membrane. As cellular physiology was unaffected in the anthocyanic cells, with cytoplasmic streaming, vacuolar and cytoplasmic pH not being altered, the decreased dye fluorescence from the anthocyanic cells can be attributed to fluorescence quenching. Furthermore, because quenching decreased with increasing temperature. It was concluded, therefore, that vacuolar anthocyanin can statically quench other fluorescent molecules in vivo, an effect previously demonstrated for anthocyanin in vitro.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3