Is the Responsiveness to Light Related to the Differences in Stem Straightness among Populations of Pinus pinaster?

Author:

Sierra-de-Grado RosarioORCID,Pando ValentínORCID,Martínez-Zurimendi PabloORCID,Moulia BrunoORCID

Abstract

Stem straightness is related to wood quality and yield. Although important genetic differences in stem straightness among the natural populations of Pinus pinaster are well established, the main drivers of these differences are not well known. Since the responses of trees to light are key ecological features that induce stem curvature, we hypothesized that populations with better straightness should exhibit lower photomorphogenetic and phototropic sensitivity. We compared three populations to identify the main processes driven by primary and secondary growth that explain their differences in response to light. One-year-old seedlings were grown under two treatments—direct sunlight and lateral light plus shade—for a period of 5 months. The length and the leaning of the stems were measured weekly. The asymmetry of radial growth and compression wood (CW) formation were analyzed in cross-sections. We found differences among the populations in photomorphogenetic and phototropic reactions. However, the population with straighter stems was not characterized by reduced sensitivity to light. Photo(gravi)tropic responses driven by primary growth and gravitropic responses driven by secondary growth explained the kinetics of the stem leaning and CW pattern. Asymmetric radial growth and CW formation did not contribute to the phototropic reactions.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction;Alméras;J. Theor. Biol.,2009

2. Wood Variation;Zobel,1989

3. Wood Formation in Trees

4. Compression Wood in Gymnosperms;Timell,1986

5. Las Regiones de Procedencia de Pinus pinaster Aiton;Alía,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3