The Development and Characterization of Near-Isogenic and Pyramided Lines Carrying Resistance Genes to Brown Planthopper with the Genetic Background of Japonica Rice (Oryza sativa L.)

Author:

Nguyen Cuong D.,Verdeprado HoldenORCID,Zita Demeter,Sanada-Morimura Sachiyo,Matsumura Masaya,Virk Parminder S.,Brar Darshan S.,Horgan Finbarr G.ORCID,Yasui Hideshi,Fujita Daisuke

Abstract

The brown planthopper (BPH: Nilaparvata lugens Stål.) is a major pest of rice, Oryza sativa, in Asia. Host plant resistance has tremendous potential to reduce the damage caused to rice by the planthopper. However, the effectiveness of resistance genes varies spatially and temporally according to BPH virulence. Understanding patterns in BPH virulence against resistance genes is necessary to efficiently and sustainably deploy resistant rice varieties. To survey BPH virulence patterns, seven near-isogenic lines (NILs), each with a single BPH resistance gene (BPH2-NIL, BPH3-NIL, BPH17-NIL, BPH20-NIL, BPH21-NIL, BPH32-NIL and BPH17-ptb-NIL) and fifteen pyramided lines (PYLs) carrying multiple resistance genes were developed with the genetic background of the japonica rice variety, Taichung 65 (T65), and assessed for resistance levels against two BPH populations (Hadano-66 and Koshi-2013 collected in Japan in 1966 and 2013, respectively). Many of the NILs and PYLs were resistant against the Hadano-66 population but were less effective against the Koshi-2013 population. Among PYLs, BPH20+BPH32-PYL and BPH2+BPH3+BPH17-PYL granted relatively high BPH resistance against Koshi-2013. The NILs and PYLs developed in this research will be useful to monitor BPH virulence prior to deploying resistant rice varieties and improve rice’s resistance to BPH in the context of regionally increasing levels of virulence.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3