Silicone-Based Membranes as Potential Materials for Dielectric Electroactive Polymer Actuators

Author:

Bernat JakubORCID,Gajewski PiotrORCID,Kołota JakubORCID,Marcinkowska AgnieszkaORCID

Abstract

This article includes an overview of the materials and a thorough analysis of the methods that are used to produce dielectric electroactive actuator membranes. The paper also presents extensive results from our experimental studies on two types of addition silicone (Silicone Mold Start 15 and Dragon Skin 10M) that are used to manufacture actuators with different active membranes of thicknesses (165 μm and 300 μm, respectively). This study explored in depth the hardware architectures and methodologies for manufacturing the selected actuators. The displacements of the actuators were compared to their responses to two types of voltage excitation: a step response and a sinusoidal signal with an increasing frequency over time. This paper graphically presents the results that we obtained for all devices, with a particular emphasis on the resonance frequencies. When comparing membranes that had the same thickness (165 μm), it was found that the mean amplitude was higher for silicone membranes with lower values for the Young’s modulus (DS = 0.57 mm and MS = 0.73 mm). All experiments were repeated for two series of measurements and the results that were obtained in this study demonstrated the successful implementation of the actuator concepts that were made from the new types of silicone, which have not yet been used for production.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3