A Novel Hybrid Polygeneration System Based on Biomass, Wind and Solar Energy for Micro-Scale Isolated Communities

Author:

Figaj RafałORCID,Żołądek MaciejORCID,Homa Maksymilian,Pałac Anna

Abstract

The availability of freshwater and energy is a serious issue in remote and islanded areas, especially at a small scale, where there may not be the possibility to access the grid and/or water distribution systems. In this context, polygeneration systems operating on the basis of local, renewable energy sources can be an answer to the users’ demand for electricity, heating, cooling, and domestic hot water. The scope of the proposed paper was to investigate, numerically, the energy and economic feasibility of a novel hybrid polygeneration system powered by biomass, solar, and wind energy for a micro-district of households. The proposed system consists of a biomass-fueled steam cycle, wind turbine, photovoltaic field coupled with thermal and electrical energy storage, adsorption chiller, and a reverse osmosis water desalination unit. The system is also assisted by an LPG generator set running as backup. The system provides space heating and cooling, electrical energy, and fresh and domestic hot water to 10 households located on Pantelleria Island, Italy. The proposed system is modelled and simulated through TRNSYS software with realistic user demand. The energy and economic performance of the proposed system are assessed with respect to a reference system in different scenarios, taking into account islanded operation, connection to the grid, and biomass tariffs. The results show that the proposed system achieves an excellent primary energy saving performance in all the investigated scenarios, with savings of more than 94% for all the investigated scenarios. Excluding any kind of funding, in case of new investment for the system, the simple payback oscillates between 7 and 12 years, showing that the developed alternative is fairly valid with respect to traditional solutions.

Funder

Polish Ministry of Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference56 articles.

1. 1 in 3 People Globally Do not Have Access to Safe Drinking Water–UNICEF, WHOhttps://www.who.int/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who

2. Thinking about Energy and Water Together Can Help Ensure That “No One Is Left behind”–Analysis-IEAhttps://www.iea.org/commentaries/thinking-about-energy-and-water-together-can-help-ensure-that-no-one-is-left-behind

3. Impacts of Climate Change on the Eastern Mediterranean and the Middle East and North Africa Region and the Water–Energy Nexus

4. Desalinated Water Affects the Energy Equation in the Middle East–Analysis-IEAhttps://www.iea.org/commentaries/desalinated-water-affects-the-energy-equation-in-the-middle-east

5. Microbial desalination cell: Desalination through conserving energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3