Hybrid Deep Reinforcement Learning Considering Discrete-Continuous Action Spaces for Real-Time Energy Management in More Electric Aircraft

Author:

Liu Bing,Xu Bowen,He Tong,Yu Wei,Guo Fanghong

Abstract

The increasing number and functional complexity of power electronics in more electric aircraft (MEA) power systems have led to a high degree of complexity in modelling and computation, making real-time energy management a formidable challenge, and the discrete-continuous action space of the MEA system under consideration also poses a challenge to existing DRL algorithms. Therefore, this paper proposes an optimisation strategy for real-time energy management based on hybrid deep reinforcement learning (HDRL). An energy management model of the MEA power system is constructed for the analysis of generators, buses, loads and energy storage system (ESS) characteristics, and the problem is described as a multi-objective optimisation problem with integer and continuous variables. The problem is solved by combining a duelling double deep Q network (D3QN) algorithm with a deep deterministic policy gradient (DDPG) algorithm, where the D3QN algorithm deals with the discrete action space and the DDPG algorithm with the continuous action space. These two algorithms are alternately trained and interact with each other to maximize the long-term payoff of MEA. Finally, the simulation results show that the effectiveness of the method is verified under different generator operating conditions. For different time lengths T, the method always obtains smaller objective function values compared to previous DRL algorithms, is several orders of magnitude faster than commercial solvers, and is always less than 0.2 s, despite a slight shortfall in solution accuracy. In addition, the method has been validated on a hardware-in-the-loop simulation platform.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3