Deep Feature Based Siamese Network for Visual Object Tracking

Author:

Lim Su-Chang,Huh Jun-HoORCID,Kim Jong-ChanORCID

Abstract

One of the most important and challenging research subjects in computer vision is visual object tracking. The information obtained from the first frame consists of limited and insufficient information to represent an object. If prior information about robust representation that can represent an object well is not sufficient, object tracking fails when not robustly responding to changes in features of the target object according to various factors, namely shape, illumination variation, and scene distortion. In this paper, a real-time single object tracking algorithm is proposed based on a Siamese network to solve this problem. For the object feature extraction, we designed a fully convolutional neural network that removes a fully connected layer and configured a convolution block consisting of a bottleneck structure that preserves the information in a previous layer. This network was designed as a Siamese network, while a regional proposal network was combined at the end of the network for object tracking. The ImageNet Large-Scale Visual Recognition Challenge 2017 dataset was used to train the network in the pre-training phase. Then, in the experimental phase, the object tracking benchmark dataset was used to quantitatively evaluate the network. The experimental results revealed that the proposed tracking algorithm produced more competitive results compared to other tracking algorithms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. Intelligent intrusion detection system featuring a virtual fence, active intruder detection, classification, tracking, and action recognition

2. DroneTrack: Cloud-Based Real-Time Object Tracking Using Unmanned Aerial Vehicles Over the Internet

3. A vision based people tracking and following for mobile robots using CAMSHIFT and KLT feature tracker

4. Path-Tracking for Autonomous Vehicles at the Limit of Friction;Laurense;Proceedings of the American Control Conference IEEE,2017

5. Hierarchical convolutional features for visual tracking;Ma;Proceedings of the IEEE International Conference on Computer Vision, ICCV 2015,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3