Fault Detection and Identification of Furnace Negative Pressure System with CVA and GA-XGBoost

Author:

Ling DanORCID,Li Chaosong,Wang YanORCID,Zhang Pengye

Abstract

The boiler is an essential energy conversion facility in a thermal power plant. One small malfunction or abnormal event will bring huge economic loss and casualties. Accurate and timely detection of abnormal events in boilers is crucial for the safe and economical operation of complex thermal power plants. Data-driven fault diagnosis methods based on statistical process monitoring technology have prevailed in thermal power plants, whereas the false alarm rates of those methods are relatively high. To work around this, this paper proposes a novel fault detection and identification method for furnace negative pressure system based on canonical variable analysis (CVA) and eXtreme Gradient Boosting improved by genetic algorithms (GA-XGBoost). First, CVA is used to reduce the data redundancy and construct the canonical residuals to measure the prediction ability of the state variables. Then, the fault detection model based on GA-XGBoost is schemed using the constructed canonical residual variables. Specially, GA is introduced to determine the optimal hyperparameters of XGBoost and speed up the convergence. Next, this paper presents a novel fault identification method based on the reconstructed contribution statistics, considering the contribution of state space, residual space and canonical residual space. Besides, the proposed statistics renders different weights to the state vectors, the residual vectors and the canonical residual vectors to improve the sensitivity of faulty variables. Finally, the real industrial data from a boiler furnace negative pressure system of a certain thermal power plant is used to demonstrate the ability of the proposed method. The result demonstrates that this method is accurate and efficient to detect and identify the faults of a true boiler.

Funder

the Promotion Special Project - Science and Technology in Henan Province

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3