Abstract
The boiler is an essential energy conversion facility in a thermal power plant. One small malfunction or abnormal event will bring huge economic loss and casualties. Accurate and timely detection of abnormal events in boilers is crucial for the safe and economical operation of complex thermal power plants. Data-driven fault diagnosis methods based on statistical process monitoring technology have prevailed in thermal power plants, whereas the false alarm rates of those methods are relatively high. To work around this, this paper proposes a novel fault detection and identification method for furnace negative pressure system based on canonical variable analysis (CVA) and eXtreme Gradient Boosting improved by genetic algorithms (GA-XGBoost). First, CVA is used to reduce the data redundancy and construct the canonical residuals to measure the prediction ability of the state variables. Then, the fault detection model based on GA-XGBoost is schemed using the constructed canonical residual variables. Specially, GA is introduced to determine the optimal hyperparameters of XGBoost and speed up the convergence. Next, this paper presents a novel fault identification method based on the reconstructed contribution statistics, considering the contribution of state space, residual space and canonical residual space. Besides, the proposed statistics renders different weights to the state vectors, the residual vectors and the canonical residual vectors to improve the sensitivity of faulty variables. Finally, the real industrial data from a boiler furnace negative pressure system of a certain thermal power plant is used to demonstrate the ability of the proposed method. The result demonstrates that this method is accurate and efficient to detect and identify the faults of a true boiler.
Funder
the Promotion Special Project - Science and Technology in Henan Province
Key Scientific Research Project of Colleges and Universities in Henan Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献