Influence of the Gas Model on the Performance and Flow Field Prediction of a Gas–Liquid Two-Phase Hydraulic Turbine

Author:

Sun Shuaihui,Ren Pei,Guo PengchengORCID,Sun Longgang,Zheng Xiaobo

Abstract

A two-phase hydraulic turbine’s performance and flow field were predicted under different Inlet Gas Volume Fractions (IGVF) with incompressible and compressible models, respectively. The calculation equation of equivalent head, hydraulic efficiency, and flow loss considering the expanding work of compressible gas were deduced based on the energy conservation equations. Then, the incompressible and compressible results, including the output power and flow fields, are compared and analyzed. The compressible gas model’s equivalent head, output power, and flow loss are higher than the incompressible model, but the hydraulic efficiency is lower. As the IGVF increases, the gas gradually diffuses from the blade’s working surface to its suction surface. The gas–liquid separation happens at the runner outlet in the compressible results due to the gas expansion. The area of the low-pressure zone in the incompressible results increases with the IGVF. However, it decreases with the IGVF in the compressible results. As the gas expands in the blade passage, it takes up more flow area, causing the high liquid velocity in the same passage. The runner’s inlet gas distribution affects the liquid flow angle, causing the inlet shock and high TKE areas, especially in the blade passage near the volute tongue. The high TKE area in the compressible results is larger than the incompressible results because the inlet impact loss and the liquid velocity in the blade passage are higher. This paper provides a reference for selecting gas models in the numerical simulation of two-phase hydraulic turbines.

Funder

National Natural Science Foundation of China

Key Research Development Program of Shaanxi Province in China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3