Geomatics and Soft Computing Techniques for Infrastructural Monitoring

Author:

Barrile Vincenzo,Fotia AntoninoORCID,Leonardi GiovanniORCID,Pucinotti Raffaele

Abstract

Structural Health Monitoring (SHM) allows us to have information about the structure under investigation and thus to create analytical models for the assessment of its state or structural behavior. Exceeded a predetermined danger threshold, the possibility of an early warning would allow us, on the one hand, to suspend risky activities and, on the other, to reduce maintenance costs. The system proposed in this paper represents an integration of multiple traditional systems that integrate data of a different nature (used in the preventive phase to define the various behavior scenarios on the structural model), and then reworking them through machine learning techniques, in order to obtain values to compare with limit thresholds. The risk level depends on several variables, specifically, the paper wants to evaluate the possibility of predicting the structure behavior monitoring only displacement data, transmitted through an experimental transmission control unit. In order to monitor and to make our cities more “sustainable”, the paper describes some tests on road infrastructure, in this contest through the combination of geomatics techniques and soft computing.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference26 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3