Radio Frequency Fingerprint-Based Intelligent Mobile Edge Computing for Internet of Things Authentication

Author:

Chen ,Wen ,Wu ,Xu ,Jiang ,Song ,Chen

Abstract

In this paper, a light-weight radio frequency fingerprinting identification (RFFID) scheme that combines with a two-layer model is proposed to realize authentications for a large number of resource-constrained terminals under the mobile edge computing (MEC) scenario without relying on encryption-based methods. In the first layer, signal collection, extraction of RF fingerprint features, dynamic feature database storage, and access authentication decision are carried out by the MEC devices. In the second layer, learning features, generating decision models, and implementing machine learning algorithms for recognition are performed by the remote cloud. By this means, the authentication rate can be improved by taking advantage of the machine-learning training methods and computing resource support of the cloud. Extensive simulations are performed under the IoT application scenario. The results show that the novel method can achieve higher recognition rate than that of traditional RFFID method by using wavelet feature effectively, which demonstrates the efficiency of our proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3