Abstract
Magnetotellurics (MT) is an important geophysical method for resource exploration and mineral evaluation. As a direct and effective form of data interpretation, MT inversion is usually considered to be a penalty-function constraint-based optimization strategy. However, conventional MT inversion involves a large number of calculations in penalty terms and causes difficulties in selecting exact regularization factors. For this reason, we propose a multiplier-based MT inversion scheme, which is implemented by introducing the incremental Lagrangian function. In this case, it can avoid the exact solution of the primal-dual subproblem in the penalty function and further reduce the sensitivity of the regularization factors, thus achieving the goal of improving the convergence efficiency and accelerating the optimization calculation of the inverse algorithm. In this study, two models were used to verify the performance of the multiplier method in the regularized MT inversion. The first experiment, with an undulating two-layer model of metal ore, verified that the multiplier method could effectively avoid the MT inversion falling into local minimal. The second experiment, with a wedge model, showed that the multiplier method has strong robustness, due to which it can expand the selection range and reduce the difficulty of the regularization factors. We tested the feasibility of the multiplier method in field data. We compared the results of the multiplier method with those of conventional inversion methods in order to verify the accuracy of the multiplier method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province, China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献