Estimating Magma Crystallization Temperatures Using High Field Strength Elements in Igneous Rocks

Author:

Daneshvar Narges,Azizi HosseinORCID,Tsuboi MotohiroORCID

Abstract

Indirect calculation of magma crystallization temperatures is an important subject for geologists to know the petrogenesis of igneous rocks. During magma evolution from generation to crystallization, several processes control the behavior of elements. In this research, we obtained two new methods for the thermometry of magma by using high field strength elements (HFSEs; Zr, Hf, Ce, Y, and Ti) abundances in igneous rocks. The first was T(K) = −15,993/(lnCZr + lnCHf − 21.668), where CZr and CHf are the bulk-rock Zr and Hf contents in ppm, and T is the temperature in Kelvin. This equation was specially formulated to address metaluminous to peraluminous rocks with M < 2 [(Na + K + 2Ca)/(Al × Si)] (cation ratio) and SiO2 > 63 wt.%. The second was T(K) = −20,914/(ln(CHf + CY + CCe) + (ln(CZr/TiO2) − 31.153). CHf, CY, and CCe, and CZr are Hf, Y, Ce, and Zr contents (ppm) in the whole rocks. The second equation is more suitable for peralkaline to alkaline rocks with M > 2 and a wide range of SiO2. Both equations are applicable for temperatures from 750 °C to 1400 °C. These two equations are simple and robust thermometry methods and predict similar values in the range of TZr thermometry, which has previously been suggested for magma crystallization temperature.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3