Produced Gas and Condensate Geochemistry of the Marcellus Formation in the Appalachian Basin: Insights into Petroleum Maturity, Migration, and Alteration in an Unconventional Shale Reservoir

Author:

Laughrey Christopher D.

Abstract

The Middle Devonian Marcellus Formation of North America is the most prolific hydrocarbon play in the Appalachian basin, the second largest producer of natural gas in the United States, and one of the most productive gas fields in the world. Regional differences in Marcellus fluid chemistry reflect variations in thermal maturity, migration, and hydrocarbon alteration. These differences define specific wet gas/condensate and dry gas production in the basin. Marcellus gases co-produced with condensate in southwest Pennsylvania and northwest West Virginia are mixtures of residual primary-associated gases generated in the late oil window and postmature secondary hydrocarbons generated from oil cracking in the wet gas window. Correlation of API gravity and C7 expulsion temperatures, high heptane and isoheptane ratios, and the gas geochemical data confirm that the Marcellus condensates formed through oil cracking. Respective low toluene/nC7 and high nC7/methylcyclohexane ratios indicate selective depletion of low-boiling point aromatics and cyclic light saturates in all samples, suggesting that water washing and gas stripping altered the fluids. These alterations may be related to deep migration of hot basinal brines. Dry Marcellus gases produced in northeast Pennsylvania and northcentral West Virginia are mixtures of overmature methane largely cracked from refractory kerogen and ethane and propane cracked from light oil and wet gas. Carbon and hydrogen isotope distributions are interpreted to indicate (1) mixing of hydrocarbons of different thermal maturities, (2) high temperature Rayleigh fractionation of wet gas during redox reactions with transition metals and formation water, (3) isotope exchange between methane and water, and, possibly, (4) thermodynamic equilibrium conditions within the reservoirs. Evidence for thermodynamic equilibrium in the dry gases includes measured molecular proportions (C1/(C1 − C5) = 0.96 to 0.985) and δ13C1 values significantly greater than δ13CKEROGEN. Noble gas systematics support the interpretation of hydrocarbon–formation water interactions, constrain the high thermal maturity of the hydrocarbon fluids, and provide a method of quantifying gas retention versus expulsion in the reservoirs.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference136 articles.

1. Marcellus shale play geology review. U.S. Energy Administration Updates to Marcellus Shale Play Maps,2017

2. Controls on Petroleum Resources for the Devonian Marcellus Shale in the Appalachian Basin Province, Kentucky, West Virginia, Ohio, Pennsylvania, and New York

3. Proved Reserves of Crude Oil and Natural Gas in the United States;U.S. Energy Information Administration,2022

4. Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook

5. A geologic study to determine the potential to create an Appalachian storage hub for natural gas liquids;Carter;Final. Rep. Appalach. Oil Nat. Gas. Res. Consort.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3