Studies on Recovery of Valuable Metals by Leaching Lead–Zinc Smelting Waste with Sulfuric Acid

Author:

Xin Chunfu,Xia Hongying,Jiang Guiyu,Zhang Qi,Zhang Libo,Xu Yingjie

Abstract

Germanium-containing residues (GCR) are a secondary resource rich in zinc (Zn) and germanium (Ge) produced in the Zn pyrometallurgical process and an important raw material for recovering Zn and Ge. To recycle the residue by hydrometallurgy, sulfuric acid is used to leach the residue under normal pressure. In this study, the experimental conditions (leaching temperature, leaching time, liquid/solid (L/S) mass ratio and initial acidity) were optimized through the experimental design to make the optimized experimental conditions consistent with the current industrial production conditions, so as to maximize the leaching rate of Zn and Ge, and the main reasons for the low leaching rate of germanium were analyzed. The results show that the optimum reaction conditions are as follows: initial acidity 160 g·L−1, leaching temperature 90 °C, L/S mass ratio 5:1, leaching time 60 min and stirring speed 400 r·min−1. Under the optimum reaction conditions, the leaching rates of Zn and Ge are 83.22% and 77.29%, respectively. The reason for the low leaching rates of Zn and Ge in GCR was obtained through atmospheric leaching experiment, electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and chemical phase analysis. GCR is mainly composed of phases such as zincite (ZnO), galena (PbS), wurtzite (ZnS) and anglesite (PbSO4), and the main elements are Zn, lead (Pb), germanium (Ge), oxygen (O), sulfur (S), silicon (Si), aluminum (Al) and Fe. This study can provide a certain reference value for researchers, in order to provide a reference for the large-scale recycling of Zn and Ge resources in the future.

Funder

National Key R&D Program of China

Yunnan Province basic research special key project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3