Surrounding Rock Stability in Unsupported Roof Area and Rapid Heading Technique for Deep Arch Coal Roadways under Goaf

Author:

Bi Yewu,Wang Mingxing,Wu Chao,Huang Yucheng

Abstract

In order to achieve rapid heading of deep arch coal roadways under goaf, the maximum unsupported roof distance (URD), surrounding rock stability of unsupported roof area and influencing factors, and rapid heading equipment and processes for these roadways are investigated in the context of the working face geology and mining conditions of Coal #9 of a certain coal mine, through theoretical analysis, numerical simulation, equipment modification, and construction process optimization. The following work is carried out: (1) Based on the thin shell theory, a mechanical model of a top cover cylindrical shell for roadways with an arch section is built. The formula for calculating the maximum URD of arch roadways is developed. The influences of roadway width, tensile strength, buried depth, and arch height on the maximum URD are analyzed. The theoretical maximum URD is worked out to be 2.4 m. (2) Numerical simulation reveals that when the URD is around 2 m, the arch roadway is free of tensile failure and the surrounding rock is well stable; when the URD is greater than 4 m, tensile failure occurs on the roadway sides, and the surrounding rock becomes less stable. Therefore, the maximum URD for numerical computation is set to 2–3 m. No additional failure occurs on the arch roof with the increase in URD, suggesting that an arch roof has the best stability. Properly increasing URD can help U-steel to gain support strength more quickly. In the shallow part of a roadway surrounding rock under goaf, failures are primarily determined by vertical stresses, whereas in the deep part, failures are determined by horizontal stresses. (3) A combined onboard standing platform + onboard beam lift device and a new onboard temporary support device for long excavation are developed as a solution to the low shed and temporary support efficiency and safety of roadways with a URD of 2.4 m and used on-site in conjunction with the optimized construction process. The result shows an average footage of over 550 m per month with a peak footage of 846.4 m and 16 supports totaling 14.1 m per shift. Additionally, the forming quality of a shed roadway is good enough to accommodate normal mining of the working face, consequently the rapid heading of the roadway.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference21 articles.

1. Physical Simulation Test on Surrounding Rock Deformation of Roof Rockburst in Continuous Tunneling Roadway

2. Micromechanisms of coal fracture: Insights from quantitative AE technique

3. A new experimental apparatus for sudden unloading of gas-bearing coal

4. Deformation and permeability evolution of coal during axial stress cyclic loading and unloading: An experimental study;Wang;Geomech. Eng.,2021

5. Theory and technology of efficient excavation with the integration of excavation and anchor;Wang;J. China Coal Soc.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3