Convection in a Ferromagnetic Fluid Layer Influenced by Changeable Gravity and Viscosity

Author:

Pant SumitORCID,Algehyne Ebrahem A.ORCID

Abstract

The motive of this work is to numerically evaluate the effect of changeable gravitational fields and varying viscosity on the beginning of convection in ferromagnetic fluid layer. The fluid layer is constrained by two free boundaries and varying gravitational fields that vary with distance across the layer. The authors hypothesized two categories of gravitational field variation, which can be subdivided into six distinct cases: (i) f(z)=z, (ii) f(z)=ez, (iii) f(z)=log(1+z), (iv) f(z)=−z, (v) f(z)=−z2, and (vi) f(z)=z2−2z. The normal mode method was applied, and the single term Galerkin approach was used to solve the ensuing eigenvalue problem. The results imply that, in the first three cases, the gravity variation parameter speeds up the commencement of convection, while, in the last three cases, the viscosity variation parameter and gravity variation parameter slow down the onset of convection. It was also observed that, in the absence of the viscosity variation parameter, the non-buoyancy magnetization parameter destabilizes the impact on the beginning of convection but, in the presence of the viscosity variation parameter, it destabilizes or stabilizes impact on the beginning of convection. In the case of oscillatory convection, the results illustrate that oscillatory modes are not permitted, suggesting the validity of the theory of exchange of stabilities. Additionally, it was also discovered that the system is more stable for case (vi) and more unstable for case (ii).

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference51 articles.

1. Ferrohydrodynamics

2. Fluid dynamics and science of magnetic liquids;Rosensweig;Adv. Electron. Electron. Phys.,1979

3. Use of ferrofluid in moving-coil loudspeakers;Hathaway;Db-Sound Eng. Mag.,1979

4. Lesser known applications of ferrofluids

5. Ferrohydrodynamics;Rosenweig,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3