On Robustness for Spatio-Temporal Data

Author:

García-Pérez AlfonsoORCID

Abstract

The spatio-temporal variogram is an important factor in spatio-temporal prediction through kriging, especially in fields such as environmental sustainability or climate change, where spatio-temporal data analysis is based on this concept. However, the traditional spatio-temporal variogram estimator, which is commonly employed for these purposes, is extremely sensitive to outliers. We approach this problem in two ways in the paper. First, new robust spatio-temporal variogram estimators are introduced, which are defined as M-estimators of an original data transformation. Second, we compare the classical estimate against a robust one, identifying spatio-temporal outliers in this way. To accomplish this, we use a multivariate scale-contaminated normal model to produce reliable approximations for the sample distribution of these new estimators. In addition, we define and study a new class of M-estimators in this paper, including real-world applications, in order to determine whether there are any significant differences in the spatio-temporal variogram between two temporal lags and, if so, whether we can reduce the number of lags considered in the spatio-temporal analysis.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. Spatiotemporal Random Fields: Theory and Applications;Christakos,2017

2. Random Fields for Spatial Data Modeling: A Primer for Scientists and Engineers;Hristopulos,2020

3. Statistics for Spatial Data;Cressie,1993

4. Geostatistics: Modeling Spatial Uncertainty;Chilès,2012

5. Spatio-Temporal Statistics with R;Wikle,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue “Probability Theory and Stochastic Modeling with Applications”;Mathematics;2023-07-21

2. Trimmed Spatio-Temporal Variogram Estimator;Building Bridges between Soft and Statistical Methodologies for Data Science;2022-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3