State and Control Path-Dependent Stochastic Zero-Sum Differential Games: Viscosity Solutions of Path-Dependent Hamilton–Jacobi–Isaacs Equations

Author:

Moon JunORCID

Abstract

In this paper, we consider the two-player state and control path-dependent stochastic zero-sum differential game. In our problem setup, the state process, which is controlled by the players, is dependent on (current and past) paths of state and control processes of the players. Furthermore, the running cost of the objective functional depends on both state and control paths of the players. We use the notion of non-anticipative strategies to define lower and upper value functionals of the game, where unlike the existing literature, these value functions are dependent on the initial states and control paths of the players. In the first main result of this paper, we prove that the (lower and upper) value functionals satisfy the dynamic programming principle (DPP), for which unlike the existing literature, the Skorohod metric is necessary to maintain the separability of càdlàg (state and control) spaces. We introduce the lower and upper Hamilton–Jacobi–Isaacs (HJI) equations from the DPP, which correspond to the state and control path-dependent nonlinear second-order partial differential equations. In the second main result of this paper, we show that by using the functional Itô calculus, the lower and upper value functionals are viscosity solutions of (lower and upper) state and control path-dependent HJI equations, where the notion of viscosity solutions is defined on a compact κ-Hölder space to use several important estimates and to guarantee the existence of minimum and maximum points between the (lower and upper) value functionals and the test functions. Based on these two main results, we also show that the Isaacs condition and the uniqueness of viscosity solutions imply the existence of the game value. Finally, we prove the uniqueness of classical solutions for the (state path-dependent) HJI equations in the state path-dependent case, where its proof requires establishing an equivalent classical solution structure as well as an appropriate contradiction argument.

Funder

National Research Foundation of Korea

Institute of Information and communications Technology Planning and Evaluation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3