Balancing Privacy Risk and Benefit in Service Selection for Multiprovision Cloud Service Composition

Author:

Liu Linyuan,Zhu Haibin,Chen Shenglei

Abstract

The popularity of cloud computing has fueled the growth in multiprovision cloud service composition (MPCSC), where each cloud service provider (CSP) can fulfill multiple tasks, i.e., offer multiple services, simultaneously. In the MPCSC, users would rather disclose some private data for more benefits (e.g., personalized services). However, the more private data is released, the more serious the privacy risk faced by users. In particular, the multiservice provision characteristic of MPCSC further exacerbates the privacy risk. Therefore, how to balance the privacy risk and benefit in service selection for MPCSC is a challenging research problem. In this paper, firstly we explore the service selection problem of balancing privacy risk and benefit in MPCSC (SSBM), then we propose an improved Kuhn–Munkres (KM) algorithm solution to the SSBM problem. Furthermore, we conduct a series of simulation experiments to evaluate the proposed approach. The experimental results show that the proposed approach is both efficient and effective for solving the SSBM problem.

Funder

Natural Sciences and Engineering Research Council

Jiangsu Province Planning Subject for the 13th Five Year Plan of Education Sciences

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. A view of cloud computing

2. Quality-Aware Service Selection for Service-Based Systems Based on Iterative Multi-Attribute Combinatorial Auction

3. Cloud Migration Research: A Systematic Review

4. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 6.3% in 2020https://www.gartner.com/en/newsroom/press-releases/2020-07-23-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-6point3-percent-in-2020

5. A Cloud Brokerage Architecture for Efficient Cloud Service Selection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3