Abstract
In this paper, we generalize a sequence of positive linear operators introduced by Ismail and May and we study some of their approximation properties for different classes of continuous functions. First, we estimate the error of approximation in terms of the usual modulus of continuity and the second-order modulus of Ditzian and Totik. Then, we characterize the bounded functions that can be approximated uniformly by these new operators. In the last section, we obtain the most important results of the paper. We give the complete asymptotic expansion for the operators and we deduce a Voronovskaya-type theorem, results that hold true for smooth functions with exponential growth.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference17 articles.
1. Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités;Bernstein;Commun. Soc. Math. Kharkow,1912
2. Détermination de la forme asymptotique de l’approximation des fonctions par les polynômes de M. Bernstein;Voronovskaya;C. R. Acad. Sci. URSS A,1932
3. Sur l’approximation des fonctions convexes d’ordre supérieur;Popoviciu;Mathematica,1935
4. On a family of approximation operators
5. Approximation of functions by a new class of linear operators
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On a composition of Ismail–May operator;Mathematical Methods in the Applied Sciences;2024-06-03
2. Approximation properties of a discrete operator;General Mathematics;2022-12-01