Design of an NSMCR Based Controller for All-Electric Aircraft Anti-Skid Braking System

Author:

Liang XuelinORCID,Xu Fengrui,Chen Mengqiao,Liu Wensheng

Abstract

In this paper, a relative threshold event-triggered based novel complementary sliding mode control (NSMCR) algorithm of all-electric aircraft (AEA) anti-skid braking system (ABS) is proposed to guarantee the braking stability and tracking precision of reference wheel slip control. First, a model of the braking system is established in strict-feedback form. Then a virtual controller with a nonlinear control algorithm is proposed to address the problem of constraint control regarding wheel slip rate with asymptotical stability. Next, a novel approaching law-based complementary sliding mode controller is developed to keep track of braking pressure. Moreover, the robust adaptive law is designed to estimate the uncertainties of the braking systems online to alleviate the chattering problem of the braking pressure controller. Additionally, to reduce the network communication and actuator wear of AEA-ABS, a relative threshold event trigger mechanism is proposed to transmit the output of NSMC in demand. The simulation results under various algorithms regarding three types of runway indicate that the proposed algorithms can improve the performance of braking control. In addition, the hardware-in-the-loop (HIL) experimental results prove that the proposed methods are practical for real-time applications.

Funder

Chang Jiang Scholars Program of Ministry of Education of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. Special Issue on More Electric Aircraft

2. Comparison of Can, Flexray, and Ethernet Architectures for the Design of Abs Systems;Salzwedel,2011

3. Fundamentals of Electric Aircraft;Thalin,2018

4. Design and Stability Analysis of High-Speed Unmanned Aerial Vehicle Electric Anti-Skid Braking System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3