Optimization of Observer Feedback Gains for Stable Sensorless IM Drives at Very Low Frequencies: A Comparative Study between GA and PSO

Author:

Zaky Mohamed S.ORCID,Shaaban Shaaban M.,Fetouh Tamer,Azazi Haitham Z.,Mesalam Yehya I.ORCID

Abstract

Instability of an adaptive flux observer (AFO) in the regenerating mode at low frequencies is a great challenge of sensorless induction motor (SIM) drives. Zero observer feedback gains (OFGs) in the regenerating mode at low frequencies are the main reasons for moving the dominant zero of the speed estimators to the unstable region. OFGs should be appropriately selected to transfer the unstable dominant zero to the stable region. In this paper, genetic algorithm (GA) and particle swarm optimization (PSO) techniques were used to design the OFGs for a stable observer. A fair comparison of the dominant zero location between the two approaches using the optimized OFGs is presented under parameter deviation. Analytical results and the design procedure of the OFGs using the two approaches are presented under deviations of stator resistance and mutual inductance to guarantee a stable dominant zero in the regenerating mode of IM. The dominant zeros obtained by PSO had a superior location to that obtained by GA for both stator resistance and mutual inductance deviations. It was observed that one of the gains had an almost constant value over a wide range of parameter deviations. However, the value of the other gain was dependent on the deviation of machine parameters. The advantage of using PSO over GA is that the relation between the gain and parameter deviation can be represented by a deterministic and mostly linear relationship. Simulation and experimental work of the SIM drive are presented and evaluated under the optimized OFGs.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3