Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery

Author:

Hong Suk-Ju,Han Yunhyeok,Kim Sang-YeonORCID,Lee Ah-Yeong,Kim Ghiseok

Abstract

Wild birds are monitored with the important objectives of identifying their habitats and estimating the size of their populations. Especially in the case of migratory bird, they are significantly recorded during specific periods of time to forecast any possible spread of animal disease such as avian influenza. This study led to the construction of deep-learning-based object-detection models with the aid of aerial photographs collected by an unmanned aerial vehicle (UAV). The dataset containing the aerial photographs includes diverse images of birds in various bird habitats and in the vicinity of lakes and on farmland. In addition, aerial images of bird decoys are captured to achieve various bird patterns and more accurate bird information. Bird detection models such as Faster Region-based Convolutional Neural Network (R-CNN), Region-based Fully Convolutional Network (R-FCN), Single Shot MultiBox Detector (SSD), Retinanet, and You Only Look Once (YOLO) were created and the performance of all models was estimated by comparing their computing speed and average precision. The test results show Faster R-CNN to be the most accurate and YOLO to be the fastest among the models. The combined results demonstrate that the use of deep-learning-based detection methods in combination with UAV aerial imagery is fairly suitable for bird detection in various environments.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. Computer-automated bird detection and counts in high-resolution aerial images: a review

2. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges

3. Estimating Abundance of African Wildlife: An Aid to Adaptive Management;Jachmann,2012

4. Estimation of density from line transect sampling of biological populations;Burnham;Wildl. Monogr.,1980

5. Bird Census Techniques;Bibby,1992

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3