Personalized Activity Recognition with Deep Triplet Embeddings

Author:

Burns DavidORCID,Boyer PhilipORCID,Arrowsmith ColinORCID,Whyne CariORCID

Abstract

A significant challenge for a supervised learning approach to inertial human activity recognition is the heterogeneity of data generated by individual users, resulting in very poor performance for some subjects. We present an approach to personalized activity recognition based on deep feature representation derived from a convolutional neural network (CNN). We experiment with both categorical cross-entropy loss and triplet loss for training, and describe a novel loss function based on subject triplets. We evaluate these methods on three publicly available inertial human activity recognition datasets (MHEALTH, WISDM, and SPAR) comparing classification accuracy, out-of-distribution activity detection, and generalization to new activity classes. The proposed triplet algorithm achieved an average 96.7% classification accuracy across tested datasets versus the 87.5% achieved by the baseline CNN algorithm. We demonstrate that personalized algorithms, and, in particular, the proposed novel triplet loss algorithms, are more robust to inter-subject variability and thus exhibit better performance on classification and out-of-distribution detection tasks.

Funder

Workplace Safety and Insurance Board of Ontario

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3