Abstract
A significant challenge for a supervised learning approach to inertial human activity recognition is the heterogeneity of data generated by individual users, resulting in very poor performance for some subjects. We present an approach to personalized activity recognition based on deep feature representation derived from a convolutional neural network (CNN). We experiment with both categorical cross-entropy loss and triplet loss for training, and describe a novel loss function based on subject triplets. We evaluate these methods on three publicly available inertial human activity recognition datasets (MHEALTH, WISDM, and SPAR) comparing classification accuracy, out-of-distribution activity detection, and generalization to new activity classes. The proposed triplet algorithm achieved an average 96.7% classification accuracy across tested datasets versus the 87.5% achieved by the baseline CNN algorithm. We demonstrate that personalized algorithms, and, in particular, the proposed novel triplet loss algorithms, are more robust to inter-subject variability and thus exhibit better performance on classification and out-of-distribution detection tasks.
Funder
Workplace Safety and Insurance Board of Ontario
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献