Abstract
Hydrothermal carbonization (HTC) continues to gain recognition over other valorization techniques for organic and biomass residue in recent research. The hydrochar product of HTC can be effectively produced from various sustainable resources and has been shown to have impressive potential for a wide range of applications. As industries work to adapt the implementation of HTC over large processes, the need for reliable models that can be referred to for predictions and optimization studies are becoming imperative. Although much of the available research relating to HTC has worked on the modeling area, a large gap remains in developing advanced computational models that can better describe the complex mechanisms, heat transfer, and fluid dynamics that take place in the reactor of the process. This review aims to highlight the importance of expanding the research relating to computational modeling for HTC conversion of biomass. It identifies six research areas that are recommended to be further examined for contributing to necessary advancements that need to be made for large-scale and continuous HTC operations. The six areas that are identified for further investigation are variable feedstock compositions, heat of exothermic reactions, type of reactor and scale-up, consideration of pre-pressurization, consideration of the heat-up period, and porosity of feedstock. Addressing these areas in future HTC modeling efforts will greatly help with commercialization of this promising technology.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献