Current Research Trends in the Process of Condensation of Cooling Zeotropic Mixtures in Compact Condensers

Author:

Kruzel MarcinORCID,Bohdal TadeuszORCID,Dutkowski KrzysztofORCID,Kuczyński WaldemarORCID,Chliszcz KatarzynaORCID

Abstract

This paper is an introduction to the cycle proposed by the authors related to research directions concerning the problems of condensation of zeotropic refrigerant mixtures. For over a hundred years, research has been conducted on the search for new working fluids in the cycles for cooling devices and heat pumps. Initially, the natural refrigerants used were replaced with homogeneous synthetic refrigerants, followed by mixtures of two or more refrigerants. Among the mixtures, there are azeotropic and zeotropic mixtures. In the case of an azeotrope mixture, a liquid solution of two or more chemical compounds is in thermodynamic equilibrium with the saturated vapor resulting from this mixture. The chemical composition of the liquid and vapor is identical. A zeotropic mixture is a liquid-vapor system in which the composition of a liquid mixture (solution) of two or more chemical compounds is always different from that of the saturated vapor generated from this liquid. This is due to the different boiling and condensation temperatures of the individual components of the mixture at the same pressure. There is a so-called temperature glide. The phase transformations of individual components do not run simultaneously, which means that the boiling or condensation phase transition temperature changes during the process being carried out. This raises a number of computational, design, and operational problems for power equipment. Today, however, zeotropic mixtures find an alternative to refrigerants with a high GWP potential. Despite the disadvantage of temperature glide, they also have advantages. These include ecological, energy, and economic indicators. As a result, they are increasingly used in the energy economy. This prompts researchers to conduct further research in the field of a detailed description of the phenomenon of boiling and condensation phase transformations of zeotropic mixtures under temperature glide, searching for new computational relationships, new design solutions, and applications. It is still an insufficiently recognized research problem. Bearing the above in mind, the authors made an attempt to review the state of knowledge in this area. Particular attention was paid to the progress in modeling the condensation phenomenon of zeotropic mixtures for application in compact heat exchangers. Miniaturization of cooling devices creates great application possibilities in this area.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3