Investigating Optimum Cooling Set Point Temperature and Air Velocity for Thermal Comfort and Energy Conservation in Mixed-Mode Buildings in India

Author:

Gokarakonda Sriraj,van Treeck Christoph,Rawal RajanORCID

Abstract

In warm and hot climates, ceiling fans and/or air conditioners (ACs) are used to maintain thermal comfort. Ceiling fans provide air movement near the skin, which enhances the evaporation of sweat, reduces heat stress, and enhances thermal comfort. This is also called the cooling effect. However, AC usage behaviour and the effects of elevated air speed through the use of ceiling fans on indoor operative temperature during AC usage are not widely studied. This study investigated the optimum AC (cooling) set point temperature and air velocity necessary for maintaining thermal comfort while achieving energy conservation, in mixed-mode buildings in India, through field studies by using used custom-built Internet of Things (IOT) devices. In the current study, the results indicate a 79% probability that comfort conditions can be maintained by achieving a temperature drop of 3K. If this drop can be achieved, as much as possible, through passive measures, the duration of AC operation and its energy consumption are reduced, at least by 67.5 and 58.4%, respectively. During the air-conditioned period, there is a possibility that the cooing effect is reduced because of increase in operative temperature due to ceiling fan operation. Therefore, the optimum solution is to maintain the highest AC set point and minimum fan speed setting that are acceptable.

Funder

Die Vereinigung der Freunde des Wuppertal Instituts

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3