Dual-Active-Bridge Model and Control for Supporting Fast Synthetic Inertial Action

Author:

Cuoghi Stefania,Mandrioli RiccardoORCID,Pittala Lohith KumarORCID,Cirimele VincenzoORCID,Ricco MattiaORCID

Abstract

This article proposes a dual-active-bridge control to support the fast synthetic inertial action in DC microgrids. First of all, the selection of the isolated DC/DC converter to link an energy storage system with the DC bus in a microgrid is analyzed and the advantages of the dual-active-bridge converter controlled by a single-phase shift modulation justify its selection. An active front-end can be then adapted to connect the DC bus with an AC grid. Secondly, this paper presents the design of a discrete PI controller for supporting fast synthetic inertial action. In particular, a discrete dual-active-bridge model based on the transferred power between both converter bridges, which overcomes the approximations of the output current linearization model, is proposed. Moreover, the article introduces a novel equation set to directly and dynamically tune discrete PI parameters to fulfill the design frequency specifications based on the inversion formulae method. In this way, during the voltage/power transients on the DC bus, the controller actively responds and recovers those transients within a grid fundamental cycle. Since the developed set of control equations is very simple, it can be easily implemented by a discrete control algorithm, avoiding the use of offline trial and error procedures which may lead to system instability under large load variations. Finally, the proposed control system is evaluated and validated in PLECS simulations and hardware-in-the-loop tests.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software-Based Power Sharing Control in Parallel Dual-Output Phase-Shift Full-Bridge Converters;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

2. Model‐based adaptive control of modular DAB converter for EV chargers;IET Power Electronics;2024-05-21

3. Performance Enhancement of Droop Controlled DC Microgrid Using Solar Fed Hybrid BIFRED Converter with RBFNN;Electric Power Components and Systems;2024-02-25

4. Seven Levels Inverter Using Current Model Predictive Control for Household V2G, V2H and G2V;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

5. Insights on DAB Converter with Auxiliary Inductors;2023 International Conference on Clean Electrical Power (ICCEP);2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3