An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants

Author:

Akhter Muhammad Naveed,Mekhilef SaadORCID,Mokhlis HazlieORCID,Almohaimeed Ziyad M.,Muhammad Munir Azam,Khairuddin Anis Salwa Mohd,Akram RizwanORCID,Hussain Muhammad MajidORCID

Abstract

Incorporating solar energy into a grid necessitates an accurate power production forecast for photovoltaic (PV) facilities. In this research, output PV power was predicted at an hour ahead on yearly basis for three different PV plants based on polycrystalline (p-si), monocrystalline (m-si), and thin-film (a-si) technologies over a four-year period. Wind speed, module temperature, ambiance, and solar irradiation were among the input characteristics taken into account. Each PV plant power output was the output parameter. A deep learning method (RNN-LSTM) was developed and evaluated against existing techniques to forecast the PV output power of the selected PV plant. The proposed technique was compared with regression (GPR, GPR (PCA)), hybrid ANFIS (grid partitioning, subtractive clustering and FCM) and machine learning (ANN, SVR, SVR (PCA)) methods. Furthermore, different LSTM structures were also investigated, with recurrent neural networks (RNN) based on 2019 data to determine the best structure. The following parameters of prediction accuracy measure were considered: RMSE, MSE, MAE, correlation (r) and determination (R2) coefficients. In comparison to all other approaches, RNN-LSTM had higher prediction accuracy on the basis of minimum (RMSE and MSE) and maximum (r and R2). The p-si, m-si and a-si PV plants showed the lowest RMSE values of 26.85 W/m2, 19.78 W/m2 and 39.2 W/m2 respectively. Moreover, the proposed method was found to be robust and flexible in forecasting the output power of the three considered different photovoltaic plants.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3