Pulsed Laser-Bleaching Semiconductor and Photodetector

Author:

Huang Chen12ORCID,Chen Fei1,Zhang Ze3,Tang Xin4,Zhu Meng5,Sun Junjie12,Chen Yi1,Zhang Xin1,Yu Jinghua1,Zhang Yiwen1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100039, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

4. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

5. No. 8358 Institute of the Third Academy of CASIC, Tianjin 300192, China

Abstract

Pulsed lasers alter the optical properties of semiconductors and affect the photoelectric function of the photodetectors significantly, resulting in transient changes known as bleaching. Bleaching has a profound impact on the control and interference of photodetector applications. Experiments using pump–probe techniques have made significant contributions to understanding ultrafast carrier dynamics. However, there are few theoretical studies to the best of our knowledge. Here, carrier dynamic models for semiconductors and photodetectors are established, respectively, employing the rectified carrier drift-diffusion model. The pulsed laser bleaching effect on seven types of semiconductors and photodetectors from visible to long-wave infrared is demonstrated. Additionally, a continuous bleaching method is provided, and the finite-difference time-domain (FDTD) method is used to solve carrier dynamic theory models. Laser parameters for continuous bleaching of semiconductors and photodetectors are calculated. The proposed bleaching model and achieved laser parameters for continuous bleaching are essential for several applications using semiconductor devices, such as infrared detection, biological imaging, and sensing.

Funder

Innovative Cross Team of the Chinese Academy of Sciences

National Key R&D Program of China

National Natural Science Foundation of China

Jilin Province Youth Growth Science and Technology Program Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3