A Blockchain-Based Trusted Edge Platform in Edge Computing Environment

Author:

Zhang JinnanORCID,Lu ChangqiORCID,Cheng Gang,Guo Teng,Kang Jian,Zhang Xia,Yuan XueguangORCID,Yan XinORCID

Abstract

Edge computing is a product of the evolution of IoT and the development of cloud computing technology, providing computing, storage, network, and other infrastructure close to users. Compared with the centralized deployment model of traditional cloud computing, edge computing solves the problems of extended communication time and high convergence traffic, providing better support for low latency and high bandwidth services. With the increasing amount of data generated by users and devices in IoT, security and privacy issues in the edge computing environment have become concerns. Blockchain, a security technology developed rapidly in recent years, has been adopted by many industries, such as finance and insurance. With the edge computing capability, deploying blockchain platforms/applications on edge computing platforms can provide security services for network edge environments. Although there are already solutions for integrating edge computing with blockchain in many IoT application scenarios, they slightly lack scalability, portability, and heterogeneous data processing. In this paper, we propose a trusted edge platform to integrate the edge computing framework and blockchain network for building an edge security environment. The proposed platform aims to preserve the data privacy of the edge computing client. The design based on the microservice architecture makes the platform lighter. To improve the portability of the platform, we introduce the Edgex Foundry framework and design an edge application module on the platform to improve the business capability of Edgex. Simultaneously, we designed a series of well-defined security authentication microservices. These microservices use the Hyperledger Fabric blockchain network to build a reliable security mechanism in the edge environment. Finally, we build an edge computing network using different hardware devices and deploy the trusted edge platform on multiple network nodes. The usability of the proposed platform is demonstrated by testing the round-trip time (RTT) of several important workflows. The experimental results demonstrate that the platform can meet the availability requirements in real-world usage scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain-Based Multi-factor K-Anonymity Group Location Privacy Protection Scheme;Computer Supported Cooperative Work and Social Computing;2024

2. The Underlying Technology Stack of Web 3.0;Web 3.0: Concept, Content and Context;2024

3. A comprehensive review of blockchain technology: Underlying principles and historical background with future challenges;Decision Analytics Journal;2023-12

4. Reward and Punishment Strategy Based Security Enhancement in IoT Using Mobile Cloud Computing;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

5. Lightweight blockchain-based technique for detection and prevention man in the middle attacks in mobile edge computing environment;Sixth International Conference on Computer Information Science and Application Technology (CISAT 2023);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3