A Wet Gas Metering System Based on the Extended-Throat Venturi Tube

Author:

Xue HaobaiORCID,Yu Peining,Zhang MaomaoORCID,Zhang Haifeng,Wang Encheng,Wu Guozhu,Li YiORCID,Zheng XiangyuanORCID

Abstract

Although the use of a classical Venturi tube for wet gas metering has been extensively studied in the literature, the use of an extended-throat Venturi (ETV) tube has rarely been reported since its first proposal by J. R. Fincke in 1999. The structure of an ETV is very simple, but due to the complexity of multiphase flow, its theoretical model has not been fully established yet. Therefore, in this paper theoretical models have been developed for the convergent and throat sections of an ETV, and the gradients of front and rear differential pressures are derived analytically. Several flowrate algorithms have been proposed and compared with the existing ones. Among them, the iteration algorithm is found to be the best. A reasonable explanation is provided for its performance. The relationship between the differential pressure gradient and the flowrate relative error is also studied, such that the relative error distributions varying with ETV measured flowrates can be derived. The gas flowrate error of ETV increases with the liquid content whilst the liquid flowrate error of ETV decreases with the liquid content, and the relative errors of liquid flowrate are generally 2 to 3 times larger than that of the gas flowrate. Finally, the ETV tends to be more accurate than the classical Venturi tube. The ETV can be designed more compact under the same signal intensity due to its significantly higher velocity in the throat section.

Funder

National Natural Science Foundation of China

China National Key Research Scheme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 4: Venturi Tubes,2003

2. Measurement of Wet Gas Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits,2012

3. Method and System for Measuring Multiphase Flow Using Multiple Pressure Differentials;Fincke,2001

4. Research the wet gas flow measurement based on dual-throttle device

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3