Assessment of the Structural Integrity of a Laser Weld Joint of Inconel 718 and ASS 304L

Author:

Kumar Niraj1,Kumar Prakash1,Upadhyaya Rajat2,Kumar Sanjeev3,Panday Chandan4ORCID

Affiliation:

1. Department of Production Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India

2. Metallurgical and Materials Engineering Department, Punjab Engineering College, Chandigarh 160012, India

3. Department of Mechanical Engineering, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar 201204, India

4. Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India

Abstract

For high-temperature industries operating at nearly 750 °C (advanced ultra-super critical boilers), dissimilar welding between Inconel alloys and austenitic stainless steel (ASS) are commonly adopted. The high-temperature resistive properties of Inconel and ASS alloys are highly qualified for high-temperature applications. In this experimental study, dissimilar autogenous laser beam welding (LBW) between Inconel 718 and ASS 304L is investigated. This paper explains the detailed study on the microstructural and mechanical behavior of the LBW dissimilar joint. The microstructural study indicates the presence of laves phases in the weld zone. Additionally, the weld zone shows heterogeneous microstructural formation, owing to the non-uniform welding heat in the different areas of the weld zone. The optical images show the presence of mixed dendrites, i.e., equiaxed, cellular, and columnar morphology, in the weld zone and in the fusion zones of either side. The energy-dispersive spectroscopy (EDS) results show the presence of segregated elements (Nb, Mo, Cr, and Ti) at the weld center. These segregated elements are the reason for the occurrence of the laves phases in the weld zone. The presence of Nb and Mo may form the laves phase (Fe, Ni, Cr)2 (Nb, Mo, Ti) along with Fe, Ni and Cr. The presence of an unmixed zone is observed in the HAZ of the Inconel 718, whereas the HAZ of the ASS 304L shows the presence of an unmixed zone (UZ) and a partially mixed zone (PMZ), as observed on the optical and SEM images. To obtain the mechanical properties of the laser weld, the tensile test, microhardness test, and impact test were measured at room temperature. The tensile specimens show a brittle failure at the ASS 304L side, which was initiated from the weld top, with average tensile stress of 658.225 MPa. The reason for the ASS 304L fracture is because of the presence of UZ and PMZ, and the lower hardness value of the ASS side. The UZ and PMZ lead to the fracture of the tensile specimen along the ASS 304L side’s HAZ. The measurement of microhardness carried out along the transverse length indicates an average microhardness of 214.4 HV, and the value is 202.9 HV along the weld depth. The mixed morphology of the microstructure promotes the variation in hardness in both directions. The hardness along the length shows a high hardness value in the weld zone and uniformly decreases along the base materials. The Charpy impact test of the weld zone shows the brittle fracture of the impact specimens. From the microstructural and mechanical results, the LBW dissimilar weld between Inconel 718 and ASS 304L is qualified for safe use in high-temperature end applications, such as AUSC power plants.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of filler materials on GTAW dissimilar welds: Inconel 718 and austenitic stainless steel 304L;Archives of Civil and Mechanical Engineering;2024-09-10

2. Combined titanium-steel structures formation by directed energy deposition using vanadium and nickel interlayers;The International Journal of Advanced Manufacturing Technology;2024-08-30

3. Interfacial microstructure and mechanical properties in diffusion bonded Inconel 718 to austenitic stainless-steel joints;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-08-02

4. Combined titanium-steel structures formation by directed energy deposition using vanadium and nickel interlayers;2024-04-04

5. Numerical and experimental investigation of autogenous GTAW weld between IN 718/ASS 304L;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3