Abstract
Forests across the globe are faced with a rapidly changing climate and an enhanced understanding of how these changing conditions may impact these vital resources is needed. Our approach is to use DISTRIB-II, an updated version of the Random Forest DISTRIB model, to model 125 tree species individually from the eastern United States to quantify potential current and future habitat responses under two Representative Concentration Pathways (RCP 8.5 -high emissions which is our current trajectory and RCP 4.5 -lower emissions by implementing energy conservation) and three climate models. Climate change could have large impacts on suitable habitat for tree species in the eastern United States, especially under a high emissions trajectory. On average, of the 125 species, approximately 88 species would gain and 26 species would lose at least 10% of their suitable habitat. The projected change in the center of gravity for each species distribution (i.e., mean center) between current and future habitat moves generally northeast, with 81 species habitat centers potentially moving over 100 km under RCP 8.5. Collectively, our results suggest that many species will experience less pressure in tracking their suitable habitats under a path of lower greenhouse gas emissions.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献